Direct growth of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition

Yen-Chun Chen,a,b Wei-Hsiang Lin,c Wei-Shiuan Tseng,a Chien-Chang Chen,a George. R. Rossman,d Chii-Dong Chen,e Yu-Shu Wu,b,f and Nai-Chang Yeha,g

 

b Department of Physics, National Tsing-Hua University, Hsin-Chu 30013, Taiwan, ROC
c Department of Applied Physics, California Institute of Technology (Caltech), Pasadena, CA, 91125, USA
d Division of Geological and Planetary Science, California Institute of Technology (Caltech), Pasadena, CA, 91125, USA
e Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
f Department of Electronic Engineer, National Tsing-Hua University, Hsin-Chu 30013, Taiwan, ROC
g Kavli Nanoscience Institute, California Institute of Technology (Caltech), Pasadena, CA, 91125, USA

   a Department of Physics, California Institute of Technology (Caltech), Pasadena, CA, 91125, USA

ABSTRACT

Plasma enhanced chemical vapor deposition (PECVD) techniques have been shown to be an efficient method to achieve single-step synthesis of high-quality monolayer graphene (MLG) without the need of active heating. Here we report PECVD-growth of single-crystalline hexagonal bilayer graphene (BLG) flakes and mm-size BLG films with the interlayer twist angle controlled by the growth parameters. The twist angle has been determined by three experimental approaches, including direct measurement of the relative orientation of crystalline edges between two stacked monolayers by scanning electron microscopy, analysis of the twist angle-dependent Raman spectral characteristics, and measurement of the Moiré period with scanning tunneling microscopy. In mm-sized twisted BLG (tBLG) films, the average twist angle can be controlled from 0° to approximately 20°, and the angular spread for a given growth condition can be limited to < 7°. Different work functions between MLG and BLG have been verified by the Kelvin probe force microscopy and ultraviolet photoelectron spectroscopy. Electrical measurements of back-gated field-effect-transistor devices based on small-angle tBLG samples revealed high-quality electric characteristics at 300 K and insulating temperature dependence down to 100 K. This controlled PECVD-growth of tBLG thus provides an efficient approach to investigating the effect of varying Moiré potentials on tBLG.