X-RAY AND INFRARED STUDIES OF ZIRCON
METAMICTIZATION

J.A. Woodhead
G.R. Rossman
L.T. Silver (all at: Div. of Geological and Planetary
Sciences, California Institute of Technology,
Pasadena, CA 91125).

Unit cell dimensions in Ceylon zircons increase with α-dosage and diffraction peaks broaden and weaken (Holland and Gottfried, 1955). IR absorption band intensities (2.5−40μm) show corresponding decreases and polarized spectra (∥ and ⊥ to the c-axis) show loss of anisotropy with increased α-dosage. Each of the observed structural changes may be used as a quantitative measure of zircon metamictization. For Ceylon zircons having total α-dosages >4x10^{15} α/mg, x-ray powder patterns show no crystal structure; zircon lattice vibrations in the far infrared are virtually absent; and polarization anisotropy is lost. Intensity of the internal SiO_{4}^{4−} vibration bands decreases with increasing α-dosage up to ~4x10^{15} α/mg where there is an abrupt change in slope. Intensities decrease more slowly at greater α-dosages and the bands continue to broaden (Wasilewski et al., 1973). For the Ceylon zircon suite all crystallographically oriented Zr-O bonds (on which lattice vibrations, anisotropy, and x-ray pattern depend) appear destroyed at a total α-dosage of 4x10^{15} α/mg. Higher α-doses continue to effect the metamict zircon by damaging and distorting the SiO_{4}^{4−} tetrahedra and their micro-environment.

Studies on this and other suites reveal a wide range in total water and hydroxide content of natural zircons with no apparent correlation between hydration and metamictization. Band positions, width and anisotropy in the O-H stretching region show that both H_{2}O and OH^{−} can occur, either together or separately, and that they are crystallographically oriented. Anisotropy in the water region also decreases with increasing α-dosage.