Abstract 5313

ALLENDE 3509 HC-2: A COMPACT TYPE A—'F' INCLUSION WITH A SNAKE-LIKE MORPHOLOGY

HC Connolly Jr.^{1,2,3}, JR Beckett⁴, GR Huss⁵, K Nagashima⁵, ED Young⁶, K Ziegler⁶, C Ma⁴, GR Rossman⁴

¹Dept. Physical Sci., Kingsborough Community College of CUNY, Brooklyn NY 11235 & Dept. Earth & Envir. Sci., The Graduate Center of CUNY, New York, NY 10016, USA.
²Dept. Earth & Planet. Sci., AMNH, New York, NY 10024, USA.
³LPL, Univ. of Arizona, Tucson, AZ 85721, USA.
⁴Div. of Geol. & Planet. Sci., Caltech, Pasadena, CA 91125, USA.
⁵Hawai'l Institute of Geophysics & Planetology, Univ. of Hawai'i at Ma[~] noa, Honolulu, HI 96822, USA.
⁶Dept. of Earth & Space Sci., UCLA, Los Angeles, CA 90095, USA.

Introduction: Calcium-, aluminum-rich inclusions (CAIs) are the first rocks to form in the solar system. Some inclusions are igneous and a very few of these (called F inclusions) experienced significant mass dependant fractionation in oxygen [1], and in some cases, other isotopic systems (FUN inclusions). Increasing the number and types of F inclusions will provide additional constraints on CAI formation and their formation environments. We report here on a Compact Type A (CTA) inclusion from Allende with an overall snake-like morphology, is an F inclusion, and initial ²⁶Al/²⁷Al that was canonical.

Analytical Methods: The entire inclusion, HC-2, was recovered from a slab of Allende 3509 (USNM). Major and minor element abundances were determined with the Cameca SX-50 at the LPL UAz. Oxygen isotopes and Al-Mg isotopic systematics were analyzed for on the Cameca 1280 ion microprobe at the Univ. of Hawai'i, Mãnoa [2]. Si isotopes were analyzed by LA-MC-ICPMS at UCLA.

Results: HC-2 has an overall morphology that is snake-like, wrapping throughout a 1.5 cm thick (total width is approximately 0.75 cm) section of the meteorite, inspiring it to be nicknamed The Snake. It has a Wark-Lovering rim on both sides, although the rim is thicker on one side. The inclusion has experienced some brittle deformation. HC-2 is dominated by spinel (Ti = 0.14–0.37; V = 0.44–0.64; Cr = 0.08–0.14; all wt%) and melilite (Ak = approximate 4 to approximate 50). Perovskites are numerous, ranging in size from sub-micron to approximately 0.5 mm. There appear to be two smaller (approximately 400 μ m) CAIs that are mineralogically layered included. SIMS analysis on spinel and melilite yield an isochron with an initial ²⁶Al/²⁷Al of (4.9 ± 0.2) \cdot 10⁻⁵. ²⁵Mg (variations from the standard in stable Mg isotope) range from approximately 5 to 13 ‰.

Oxygen isotopes: Melilites have δ^{18} O- δ^{17} O- values that span approximately 10 ‰ and plot on the CCAM line near the TF line. Two perovskite grains are isotopically different with δ^{18} O, δ^{17} O of (in ‰) approximately -28, -31 in one and -40, -44 in the other. Overall, the spinels are ¹⁶O-rich and show a clear mass fractionation of 4 ‰ amu)⁻¹, (δ^{18} O = -34 to -42 ‰; δ^{17} O = -41 to -45 ‰) with the overall trend to the right of the CCAM line.

Conclusion: HC-2 is clearly igneous. The reason for its unusual shape is not clear, but it must have formed while plastic. Based on the stable isotope data, HC-2 experienced considerable mass-dependent isotopic fractionation, most likely while molten and while ²⁶Al was present. We will compare our data to other 'F' inclusions to place new constraints on CAI formation and the environment in which they formed.

References: [1] Bullock E. S. et al. 2011. Abstract #2312. 42nd Lunar and Planetary Science Conference. [2] Kentaro et al. 2009. Geochimica et Cosmochimica Acta. [3] Shahara and Young. 2009. Earth and Planetary Science Letters.