Li-bearing tourmalines in Variscan pegmatites from the Moldanubic nappes, Lower Austria: Chemistry, crystal structures, spectroscopic and geochronological data

Andreas Ertl1, Ralf Schuster2, John M. Hughes3, Thomas Ludwig4,

Hans-Peter Meyer4, Friedrich Finger5, M. Darby Dyar6, Katja Ruschel1,

George R. Rossman7, Urs Klötzli8, Franz Brandstätter9,

Christian L. Lengauer1, Ekkehart Tillmanns1

1Institut für Mineralogie und Kristallographie, Geozentrum,
Universität Wien, Althanstrasse 14, A-1090 Wien, Austria

2Geologische Bundesanstalt, Neulinggasse 38, A-1030 Wien, Austria

3Department of Geology, University of Vermont, Burlington, Vermont 05405, U.S.A.

4Institut für Geowissenschaften, In Neuenheimer Feld 236, 69120 Heidelberg, Germany

5Fachbereich Materialforschung & Physik, Universität Salzburg,
Hellbrunnerstrasse 34, A-5020 Salzburg, Austria

6Department of Geography and Geology, Mount Holyoke College,
South Hadley, Massachusetts 01075, U.S.A.

7Division of Geological and Planetary Sciences
California Institute of Technology, Pasadena, CA 91125-2500, USA

8Deptartment of Lithospheric Research, Geozentrum,
Universität Wien, Althanstrasse 14, A-1090 Wien, Austria

9Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, A-1014 Wien, Austria


Crystal structures, chemical (including light elements) and spectral data (optical and Mössbauer spectroscopies) were used to characterize coloured (brown, pink, green) tourmalines from three granitic pegmatites from the Moldanubian nappes (Königsalm, Maigen and Blocherleitengraben; Lower Austria). The tourmalines can be classified as fluor-schorl, schorl, foitite, magnesiofoitite, olenite and “fluor-elbaite” with varying Li contents, up to ~1.2 wt.% Li2O. Coexisting minerals are quartz, plagioclase (up to 7 mol% anorthite), microcline, garnet (spessartine-almandine), muscovite, biotite (annite), very rare lepidolite, apatite, monazite-(Ce), xenotime-(Y), allanite-(Ce) and zircon. The chemical composition of the Fe2+-rich tourmaline samples (up to ~1.0 wt.% TiO2) varies from fluor-schorl, with a = 15.987(2), c = 7.163(2) Å to X(˙0.63Na0.37) Y(Fe2+1.12Al1.09Mg0.56Mn2+0.08Fe3+0.07Li0.02Ti4+0.01Zn0.01˙0.04) Z(Al5.74Mg0.26) (BO3)3 [Si5.96Al0.04O18] V(OH)3 W[(OH)0.95F0.05], strongly dichroic (pink and blue) foitite, with a = 15.9537(2), c = 7.1448(4) Å, to X(˙0.51Na0.49) Y(Fe2+0.97Al0.93Mg0.75Fe3+0.23Mn2+0.04Li0.01Ti4+0.01˙0.06) Z(Al5.72Mg0.28) (BO3)3 [Si5.95Al0.05O18] V(OH)3 W[(OH)0.91O0.06F0.03], magnesiofoitite, with a = 15.9476(4), c = 7.1578(4) Å. The chemical composition of the Al- and Li-rich and Mn2+-bearing (up to ~5.7 wt.% MnO) samples varies from X(Na0.84Ca0.02˙0.14) Y(Al1.35Li0.78Mn2+0.65Ti4+0.01˙0.21) ZAl6 (BO3)3 [Si5.92Al0.04B0.04O18] V(OH)3 W[F0.81(OH)0.19], “fluor-elbaite” with a = 15.8887(3), c = 7.1202(3) Å, to X(Na0.76Ca0.12˙0.12) Y(Al1.52Li0.69Mn2+0.43Fe2+0.09˙0.27) ZAl6 (BO3)3 [Si5.71B0.29O18] V(OH)3 W[F0.69(OH)0.31], B-rich “fluor-elbaite”, with a = 15.8430(3), c = 7.1051(3) Å. A positive correlation between the <T-O> and <Z-O> bond lengths in tourmalines where the Z site is only occupied by Al (R2 = 0.617) is useful to correct the <Z-O> bond length for the inductive effect of the varying <T-O> bond length. This is important for producing accurate assignments for the different 6-coordinated sites in tourmaline.

On the basis of Sm-Nd (garnet, monazite), U-Th-Pb, and U-Pb ages (monazite), the pegmatites crystallized during the Variscan tectonometamorphic event in the Visean (339 ± 4 Ma Maigen, 332 ± 3 Ma Königsalm). These ages are in the range of the earliest intrusions of the South Bohemian pluton (Rastenberg type durbachites). However, on the basis of the spatial relationship of the pegmatites and the Rastenberg type intrusions, a linkage of the intrusive body and the pegmatites is unlikely. Alternatively, the pegmatites may have evolved as granitic pegmatitic melts during decompression from the surrounding country rocks in the frame of exhumation of the Modanubic nappes after the peak of the Variscan metamorphism.



Königsalm tourmaline, unpolarized light.

Dichroism of the Königsalm tourmaline

European Journal of Mineralogy 24, 695-715.